Wednesday, December 29, 2010

Why No Isotropic Structures?

I am occasionally asked why ski bases don't have random or non-directional structures.    Typically the question is posed with the addition of "...like a golf ball!"


The idea of random isotropic surface structures seems attractive at first.    Something simple, elegant, and maybe even something easy to apply to a ski.     Imagine a surface finish on a ski that could be sprayed on! Perhaps smooth indentations on the ski base from a shot-peen gun, or cuts from an abrasive sandblasting apparatus.    That seems simple and relatively inexpensive.    But would it work?

Golf balls travel through the air, spinning, without a set orientation to the travel direction (imagine having to line up the golf ball just so on the tee...!).     Additionally, the axis of spin can translate while the ball is flying through the air.      So a non-directional isotropic arrangement of the dimples is best.  

Angled pattern, but the structure elements are
all aligned length-wise.
But a ski doesn't travel randomly; it doesn't behave the same in all directions.    Cross country skis travel in a straight line, and always work through the snow tip-to-tail.     For this reason, the base structures are optimized to maximize the benefits, and minimize any negatives.      Structures and base finishes need to take into account the motion of the ski against the frictional interface.

Note that while skating there is typically a bit of torsional force and movement of the ski in the snow.   Additionally, skate skis usually slide through less transformed snow than a ski in a set (classic) track.    So skate skis and classic skis are sometimes treated differently.

The skate ski structures are tending toward broken patterns, which have easier separation and less stickiness in the ski release.      Long, straight, continuous linear structures with continuous frets tend to track well but have a stickier release or separation from the snow.        Broken structures with linear elements, but with angled interference patterns are proving to work very well on both skate and classic skis.

So, skis don't get the simple isotropic base structures, but rely on lengthwise oriented patterns.    The ski structure designs utilize depth, spacing, orientation, and pattern to optimize the ski speed through the snow in various conditions.

3 comments:

Caitlin Dacey said...

ad

Natalie L. McKinney said...

During the 1980s, materials designers have become aware of the potential uses of advanced thermoplastic composites as alternatives to metals. A composite can be defined as a material composed of two or more discrete constituents, with at least one constituent serving as a reinforcing agent.

Janet J. Delacerda said...

Structural analysis is the process that examines the physical integrity of a structure, such as an aircraft, bridge, building or sea vessel. This process relies on the constant laws and principals of physics and mathematics to predict and examine the stability of a structure.